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The ever increasing number of experimentally resolved crystal structures

supports the possibility of fully empirical crystal structure prediction for small

organic molecules. Empirical methods promise to be signi®cantly more ef®cient

than methods that attempt to solve the same problem from ®rst principles.

However, the transformation from data to empirical knowledge and further to

functional algorithms is not trivial and the usefulness of the result depends

strongly on the quantity and the quality of the data. In this work, a simple

scoring function is parameterized to discriminate between the correct structure

and a set of decoys for a large number of different molecular systems. The

method is fully automatic and has the advantage that the complete scoring

function is parametrized at once, leading to a self-consistent set of parameters.

The obtained scoring function is tested on an independent set of crystal

structures taken from the P1 and P�1 space groups. With the trained scoring

function and FlexCryst, a program for small-molecule crystal structure

prediction, it is shown that approximately 73% of the 239 tested molecules in

space group P1 are predicted correctly. For the more complex space group P�1,

the success rate is 26%. Comparison with force-®eld potentials indicates the

physical content of the obtained scoring function, a result of direct importance

for protein threading where such database-based potentials are being applied.

1. Introduction

The problem of crystal structure prediction is notoriously

dif®cult because, especially for small organic molecules, a

large number of distinct structures can be found that show

similar physical characteristics, such as energy or density

(Gavezzotti, 1998). The actual task of structure prediction can

be decomposed into two parts: the creation of a set of plaus-

ible solutions that contains at least one conformation which is

reasonably close to the correct structure and the ranking of

these solutions according to their quality, i.e. the probability

that they correspond to the correct solution. The two parts are

often referred to as sampling and scoring, respectively. Ideally,

algorithms should perform a weighted sampling, spending

more time searching the parts of conformational space close to

the correct solution, thus simultaneously addressing both

aspects of the problem. However, this suggests that optimal

search algorithms already contain, at least in a rough and

approximate manner, some knowledge of the form of the

solution. This self-consistency problem can be addressed

either by iteration or by use of heuristics, simple rules guiding

the search, based on empirical knowledge about the general

features of the solutions in similar problems. Certain iterative

algorithms, such as simulated annealing, can guarantee

convergence, at least in theory, however, this is usually of little

practical relevance, since the number of iterations is not

strictly limited. Heuristic approaches, when applicable, tend to

be very ef®cient, but can break down for special cases. Ef®-

cient heuristic algorithms for sampling the crystal structures of

rigid molecules have been developed and tested previously

(Hofmann & Lengauer, 1997; Gavezzotti, 1991, 1996).

The present work concentrates on the ranking problem. By

making the assumption that the crystal structure has the

lowest (free) energy, the energy difference between the

experimental crystal structure and any other structure (which

we will refer to as a decoy) of the same molecule must be

positive. Using this information, one would ideally para-

metrize a scoring function that yields the correct sign for

energy differences. The huge amount of data available on

high-resolution experimental structures may be used to obtain

such empirical scoring functions. Such procedures have been

applied in the ®eld of protein structure prediction with some

success (Maiorov & Crippen, 1992; Thomas & Dill, 1999; Zien

et al., 2000). Special care has been taken to minimize the



amount of prior information used to formulate the scoring

function. The scoring function is assumed to be a discrete

atomic pair potential with a ®nite cut-off. No other assump-

tions concerning its functional form are made.

The quality of the scoring function depends on the method

of derivation, the functional form of the class of functions

from which the scoring function is chosen, and the quality and

quantity of the data. In this work, we describe the derivation

of a simple scoring function for the empirical crystal structure

prediction of small molecules. The procedure consists of the

following three steps: cleaning up of the database, training of

the scoring function and validation. Cleaning up the database

was found to be important for the quality of the training, since

wrong structures often tend to in¯uence learning in parts that

are scarcely sampled.

2. Clean up of the database

It is estimated that in some space groups up to 10% of the

structures stored in molecular databases may be wrong, e.g. a

study on the space group Cc in the CSD found approximately

one tenth of the structures to be incorrect (Marsh, 1997).

However, for empirical predictions one needs highly accurate

data sets. For our purposes, we used the Cambridge Structural

Database System (CSD; Database V5.17, April 1999 Release;

Allen & Kennard, 1993). The standard ¯ags for selecting well

de®ned structures were set (insist on coordinates, insist on a

perfect match, insist no disorder, insist no polymers, insist R

factor � 10% and insist on no errors) and the structures were

extracted in fdat format. We change in this application from

the previously used format mol2 (Hofmann & Lengauer, 1997)

to this format to avoid additional problems owing to the

conversion routine. In particular, we observed that the

conversion fails for nonstandard origins. From the retrieved

structures, we removed several structures according to the

following criteria:

(i) All structures with a different number of H atoms in the

molecular formula than in the coordinate list were removed

(� 25%). Owing to the H� � �X interactions and the general

unreliability of H positions, we did not add or correct the

positions of the H atoms.

(ii) Only structures of the space groups P�1, P21, P212121,

P21=c and P1 were considered. These space groups cover

69.4% of the known crystal structures. The other space groups

cannot be handled by our program at present. The structures

of the ®rst four space groups were used for training of the

scoring function, while space group P1 was selected as a test

set.

(iii) Crystal structures with molecules occupying symmetric

positions were removed, since the necessary algorithms for

these special cases have not been implemented yet.

(iv) Each crystal structure was checked for close contacts.

117 structures with contacts at distances below a threshold of

rmin � 1:3 AÊ were removed. The very short distance of 1.3 AÊ

occurs in hydrogen bonds. The hydrogen might be near the

center between two O atoms (e.g. BAHOXH01, neutron

study).

(v) Crystal structures with unusual cell volumes were

removed. In a few cases, the assignment of structures to a

subgroup is faulty. Such structures can be found by a

comparison between an estimated cell volume and the given

cell volume (Hofmann, 2001).

In total about three quarters of the database were excluded

by the screening ¯ags and the above criteria. Our tests for

volume and close contacts indicate 69 structures in error

(0.1%) and 87 doubtful structures (0.1%). (The refcodes of

these structures are given in the supplementary material1 and

can be found at http://cartan.gmd.de/FlexC/home.html.). This

lies far below the mentioned estimation of 10% for space

group Cc. More and more sophisticated programs will be able

to clean up the databases leading to a rapid decrease in the

number of incorrect structures and increase the value of the

databases.

3. Training of the scoring function

The score of the structure is dependent on the intermolecular

contacts in the crystal. Each atom pair of the atom types i and j

with a distance r in the kth interval rk � r< rk�1 contributes a

weight �i;j;k. To minimize computational effort ®rst all contacts

xi;j;k are summed up and the frequency is stored sequentially

to a vector. This vector X, containing all the intermolecular

contacts, is called the structure vector, in analogy to similar

applications in computational biology. Finally the frequency of

a certain contact xi;j;k is multiplied by its corresponding weight

�i;j;k. Thus, the total score of a crystal structure corresponds

to the scalar product between the weight vector � and the

structure vector X.

E � �X �P
i

P
j

P
k

xi;j;k�i;j;k: �1�

Distances between 1.3 and 5.5 AÊ are considered as inter-

molecular contacts. For the upper distance, we can observe

that the weight is almost zero and does not contribute to the

total score any more. The lower distance does not occur,

because all structures with contacts below 1.3 AÊ are consid-

ered to be wrong. An analysis of the database suggests this

threshold for intermolecular hydrogen bonds. The range

between 1.3 and 5.5 AÊ is divided into 30 equidistant intervals k

with a width of 0.14 AÊ .

k � b�rÿ 1:3 AÊ �=30c � 1: �2�
An example of a structure vector is shown in Table 1. The

structure vector starts with two small hydrogen±hydrogen

contacts at approximately 1.8 AÊ and ends with eight oxygen±

oxygen contacts near the cut-off at approximately 5.4 AÊ . This

typical organic compound contains only the common elements

C, H, N and O.

The scoring function is trained to discriminate the struc-

tures found in the database from slightly distorted structures.

The distorted structures are termed decoys (Maiorov &
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Crippen, 1992). A function that, for a set of crystal structures

and corresponding decoys, yields lower scores for the crystal

structures than for the corresponding decoys is termed

consistent with this set. The assumption that such a function

does indeed exist is based on the hypothesis that the crystal

structures observed in the experiments attain the global

minima of free energy. This hypothesis is widespread in

chemistry, even if in some cases metastable structures can

crystallize; a phenomenon referred to as polymorphism. If the

scoring function closely approximates the free energy function

for every system (besides the polymorphic) it will be able to

discriminate between crystal structures and decoys. Therefore,

the terms energy and score can be interchanged. The method

is limited by the approximation of the atom-pair potential

used here and in common force ®elds. Although a consistent

function for all crystal structures may exist, in principle, it may

be impossible to model with a pair potential.

For the generation of decoys, the cell vector a of the

experimental structure is elongated or shortened by a random

value up to �1 AÊ . For each structure, 15 decoys are produced.

The number of decoys per structure has been kept low,

because further decoys are relatively similar and the infor-

mation contained in the different decoys overlaps. The low

number of decoys allows for the use of more crystal structures,

which, as already mentioned, have a higher information

content than decoys.

The aim of the training is to ®nd a weight vector � for which

the following condition is met for every molecule in the

training set.

En � �Xn � Ein � �Xn; �3�
where Xn and Xin are the conformations corresponding to the

crystal structure and a decoy, respectively. We can also write:

0 � �Xin ÿ �Xn � ��Xin ÿ Xn�: �4�
Therefore, the decoy conformations are represented relative

to the corresponding crystal structure. In this formulation, the

problem can be solved by any of a number of standard tech-

niques. In this case, a simple descent procedure for minimizing

the perceptron function J

J��� �P
in

max
ÿ
0; ��Xn ÿ Xin�

� �5�

was used. J can be understood as a measure of the errors made

by the scoring function de®ned by the parameter vector �. The

structure vectors are normalized to avoid the different data

entering the function J with different weights.

Simple descent schemes are known to converge in a ®nite

number of steps for consistent data, i.e. if a parameter vector �
exists that satis®es all inequalities required by the data (Duda

& Hart, 1973). For inconsistent data, our method does not

converge to a particular solution. However, after a number of

iterations, solutions are obtained that are accurate enough for

our purposes. In practice, the data are always inconsistent.

This is because a low ratio of variables (parameter vector

components) to the number of data is used to avoid extreme

over®tting. Therefore, the procedure is discontinued after a

Table 1
Structure vector of BDORLA10.

k i j Frequency k i j Frequency

4 1 1 2 30 1 8 24
9 1 1 2 19 6 6 4

11 1 1 2 20 6 6 8
13 1 1 2 21 6 6 4
14 1 1 6 22 6 6 8
15 1 1 6 23 6 6 16
16 1 1 2 24 6 6 6
17 1 1 6 25 6 6 2
18 1 1 4 26 6 6 8
19 1 1 6 27 6 6 10
20 1 1 4 28 6 6 14
21 1 1 8 29 6 6 6
22 1 1 8 30 6 6 8
23 1 1 8 20 6 7 2
24 1 1 4 21 6 7 2
25 1 1 12 22 6 7 4
26 1 1 10 23 6 7 4
27 1 1 8 24 6 7 4
28 1 1 12 25 6 7 4
29 1 1 16 26 6 7 12
30 1 1 10 28 6 7 4
13 1 6 2 29 6 7 2
15 1 6 6 30 6 7 4
16 1 6 12 14 6 8 2
17 1 6 14 15 6 8 4
18 1 6 8 16 6 8 4
19 1 6 12 17 6 8 6
20 1 6 10 18 6 8 14
21 1 6 10 19 6 8 8
22 1 6 10 20 6 8 4
23 1 6 10 21 6 8 10
24 1 6 28 22 6 8 10
25 1 6 12 23 6 8 12
26 1 6 12 24 6 8 26
27 1 6 20 25 6 8 12
28 1 6 30 26 6 8 20
29 1 6 28 27 6 8 10
30 1 6 24 28 6 8 14
18 1 7 4 29 6 8 18
19 1 7 4 30 6 8 12
21 1 7 4 28 7 7 2
23 1 7 2 19 7 8 2
24 1 7 2 20 7 8 4
26 1 7 10 21 7 8 2
27 1 7 4 23 7 8 4
28 1 7 6 24 7 8 4
29 1 7 4 26 7 8 4

6 1 8 2 27 7 8 2
10 1 8 8 28 7 8 6
12 1 8 10 29 7 8 2
13 1 8 4 30 7 8 6
14 1 8 4 11 8 8 2
15 1 8 2 13 8 8 2
16 1 8 2 15 8 8 4
17 1 8 4 16 8 8 4
18 1 8 6 17 8 8 2
19 1 8 10 20 8 8 6
20 1 8 8 21 8 8 6
21 1 8 12 22 8 8 4
22 1 8 4 23 8 8 8
23 1 8 16 24 8 8 4
24 1 8 10 25 8 8 2
25 1 8 24 26 8 8 6
26 1 8 12 28 8 8 2
27 1 8 14 29 8 8 6
28 1 8 18 30 8 8 8
29 1 8 20



constant number of iterations (1000) and the parameter vector

yielding the lowest number of errors is kept as the solution

vector. In order to obtain a complete potential, we have

assigned a more or less arbitrary value of 10 to all bins that

were not trained. This value is much higher than the weights

obtained by training and corresponds to an in®nite term which

effectively screens out all conformation sampling distances

that were not in the data set of crystal structures and were

therefore not trained for. After the initial training, the

program FlexCryst was used for structure prediction of the

compounds in space group P�1. In a second step, crystal

structures of space group P�1 were generated and scored with

FlexCryst. All candidate structures with a lower score than the

corresponding experimental structure (approximately 20 000)

were collected and used again with the original training set for

learning. Unlike the initial decoys, these structures differ

signi®cantly from the experimental structures. This type of

decoy generation is signi®cantly more time consuming,

however, it leads to structures that are harder to learn than

the naive decoys. The scores obtained after this round are

presented and discussed shortly.

4. Structure generation

For validation of the scoring function, the atom-pair potentials

obtained were applied to the crystal structure prediction of

organic molecules. It is well known that crystal structures are

highly sensitive to intermolecular potentials. Sometimes

thousands of quite different local minima can fall within a

narrow energy range (40 kJ molÿ1), as has been shown for

monosaccharides (van Eijk et al., 1995). This fact is re¯ected

by the phenomenon of polymorphism (Threlfall, 1995) in

nature, where many different crystal structures can often be

found for one molecule.

Most present methods (Willock et al., 1995; Holden et al.,

1993; Gavezzotti, 1996; Hofmann & Lengauer, 1997) assume

that the conformation of the molecule is known or restricted

to a few alternatives. During sampling, the conformation of

the molecule remains ®xed. This assumption is justi®ed for

pigments, which are rigid owing to large � systems, and for

steroids owing to the high connectivity of the atoms. The

methods of crystal structure prediction generate a list of

possible candidate structures. These structures are ranked

according to their score. A prediction is successful if the top-

ranking structure is nearly identical to the experimentally

determined structure. This is not always the case owing to

problems in structure generation, inaccuracies of the scoring

function and polymorphism. During structure generation, the

variable space is incompletely scanned and generated struc-

tures can deviate somewhat from the minimum (especially in

the case of discrete modeling). Inaccuracies of the scoring

function are due to scarcity of data or the neglect of three-

body interactions. In these cases, the experimental structure is

not ranked best, but should be found among the top-ranking

structures. Finally, polymorphic structures are metastable and

do not correspond to the global (free) energy minimum. For

the generation of crystal structures FlexCryst (Hofmann &

Lengauer, 1997, 1998, 1999) was used. This algorithm follows

the nuclei concept (Gavezzotti, 1991). In the simple case of

space group P1, we start with a molecule, calculate energeti-

cally favorable chains, extend these chains to planes and ®nally

search for proper three-dimensional structures. In general, all

crystal structures can be generated in four steps or less, by

successive addition of symmetry elements. Algorithms from

the docking program FlexX (Rarey, Kramer et al., 1996; Rarey,

We®ng & Lengauer, 1999; Kramer et al., 1999) are applied to

automatically ®nd putative symmetry operations. For the

calculation of proper aggregates, we search for preferred

positions of single atoms. The complete interaction between

two molecules is given by the sum of the interactions of their

atoms.

EIJ �
PnI

i

PnJ

j

p�i; j; rij�: �6�

To ®nd the preferred interaction points, the molecule is

embedded into a grid of 0.5 AÊ 3. (This grid size results from a

trade-off between the accuracy of the results and the

computational ef®ciency.) At each grid point, a hypothetical C

atom is placed and its interaction with the molecule is calcu-

lated. The best interaction points are retained for further

processing.

In the next step, symmetry operations are determined that

map one of these interaction points p to an atom c. Each

symmetry operation is de®ned by a rotation matrix W and a

translation vector w. In general our condition can be written

as:

Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz

0@ 1A px

py

pz

0@ 1A� wx

wy

wz

0@ 1A � cx

cy

cz

0@ 1A: �7�

The rotation matrix W involves three variables, the three

Euler angles, while the translation vector w involves three

additional variables. The variables of the rotation matrix are

scanned in steps of 5� and the translation vector is determined

by the solution of the equation. In the special case of pure

translation and inversion, the procedure simpli®es. For a

translation, the rotation matrix is equal to the unit matrix 1

and for an inversion the rotation matrix is ÿ1. For each of the

determined symmetry operations, the energy of the corre-

sponding dimer is calculated and the energetically favored

symmetry operations are retained.

The combination of several of these symmetry operations

de®nes a crystal structure of a certain space group. To

generate a structure of P1, three translations are combined,

for P�1 four inversions, for P21 one screw axis and two trans-

lations, for P21=c one screw axis and two inversions, and for

P212121 two screw axes. The volume of the generated struc-

tures is calculated ®rst. Only if the volume of the structure

deviates from the estimated value by less than 25% is the

structure retained for further processing. The retained struc-

tures are ranked and sorted according to the scoring function

described above.
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5. Results

The scoring function was trained on structures from the space

groups P�1, P21, P21=c and P212121. The trained scoring func-

tion was tested on the space group P1. The generation of

structures in space group P1 is simpler and faster than for

other space groups. Thus, problems that may relate to crystal

structure generation are avoided. The molecule conformation

was extracted from the database and used as input to Flex-

Cryst. The generated structures were ranked and compared to

the experimental crystal structure. As a similarity measure, we

used the largest distance between the unit-cell edges and the

nearest grid point of the experimental structure.

In Fig. 1, the measure of similarity is illustrated for the

simpli®ed case of the plane group p1. The experimental

structure is de®ned by the two vectors b1 and b2. These two

vectors de®ne the grid (circles). The calculated structure is

de®ned by the unit-cell vectors b01 and b02. The similarity

measure corresponds to the maximum of the distances r1 and

r2 of the unit-cell vectors to the nearest grid point

s � max�r1; r2�. The origin o can be chosen arbitrarily in this

space group, but must be taken into account for other space

groups, e.g. for space group P�1 the origin must be an inversion

center. For application of this measure of similarity, the

molecular conformations have to be superimposed. In Flex-

Cryst, the molecule remains ®xed in space and the cell is

constructed around the molecule, thus the molecules are

superimposed, by default.

This similarity index is very fast and simple to calculate, but

not as universally used as others (Lommerse et al., 2000;

Gavezzotti & Filippini, 1995) based on root-mean-square

deviations. It is restricted to one speci®c conformation of a

molecule in a particular space group. Other similarity

measures are also able to recognize similar crystal structures if

they are described in different space groups, for example, a

small distorted crystal described in a subgroup with the

undistorted crystal structure. The similarity index s and the

root mean-square deviation r.m.s., considering only the

molecule centers of the six closest molecules around the

central molecule, is related by s ' 1:32� 0:17r:m:s: in

space group P1. In space group P�1, the relation is

s ' 21=31:32r:m:s: � 1:64r:m:s:. The factor 21=3 takes into

account that the unit cell contains two molecules. Taking the

maximum deviation avoids the averaging effect inherent to

the calculation of the r.m.s.

For our validation, two structures were considered similar if

the measure of similarity max�r1; r2; r3; o� was below 1.8 AÊ .

This limit was chosen to be comparable to the application of

statistically derived potentials (Hofmann & Lengauer, 1997)

and is required by the mesh used there. In the discrete

approach of structure generation, cell vectors must fall on

mesh points. In a mesh of 1.0 AÊ , two neighboring mesh points

have the distance in the diagonal of �3� 12�1=2 ' 1:8 AÊ . The

®ner mesh of 0.5 AÊ , applied in this work, suggests a limit of

�3� 0:52�1=2 ' 0:86 AÊ . Most of the similar structures ful®l this

requirement also, but for the sake of comparison with the

earlier study the larger boundary is applied.

The validation procedure was applied to the space groups

P1 and P�1. P1 is the most simple group for the problem of

structure generation, because this group has only nine degrees

of freedom (three angles, the length of the unit-cell vectors

and the orientation angles of the molecule in the cell).

Therefore, this group allows a fast test of the scoring function

to a large number of molecules. The generation of structures in

this space group is nearly always successfull (85.5%) and the

scoring function can be tested best. In a second test we vali-

dated the algorithm for space group P�1. P�1 has 12 degrees of

freedom (in addition, the origin of the unit cell has to be

determined), which is the highest number of degrees of

freedom among all the space groups. For this space group, the

problems of structure generation and scoring function inter-

fere. In this sense, the ®rst problem refers to the test of the

scoring function and the second test on P�1 the problem of

crystal structure prediction.

All 239 structures of space group P1 in the database

ful®lling the screening conditions has been collected. In 174

cases (72.8%), the structure ranked best was similar to the

experimental structure and the prediction was considered

successful. The more stringent cut-off of 0.86 AÊ reveals 144

cases (60.3%) as correct. The experimental structure was

found to have a lower energy than all generated structures in

138 cases (57.7%). Fig. 2 shows the overall distribution of the

similar structures. In 205 of 239 cases (85.8%), a structure that

Figure 1
Similarity index for the plane group p1.

Figure 2
Histogram of the rank of structures similar to the experimental structure
in space group P1.



is similar to the experiment is among the possible candidates.

In three cases, the ranks are above 40 and the prediction

cannot be considered successful. The results compare favor-

ably with results published earlier (Hofmann & Lengauer,

1997), which were based on statistical potentials. There the

success rate was 52.7% for a set of structures of space group

P1 restricted to the most common atoms in organic chemistry.

In the second test, we applied the sampling algorithm and

the scoring function to 54 structures of the space group P�1, not

contained in the training set. Applying the smaller threshold

of 0.86 AÊ structure prediction succeeded in ®ve cases (9%)

and a similar structure was ranked ®rst. With application of

the former threshold of 1.8 AÊ , the prediction was successful in

14 cases (25.9%). This compares favorably with previously

published success rates of 13.6% achieved by statistically

derived potentials. Among the generated structures, a similar

structure was found in 23 cases (42.6%). Further improvement

of the structure generation can be achieved by retaining more

nuclei during the successive construction of crystal structures,

but the success rate competes with the calculation time of this

step. The scoring was correct in 35 cases (64.8%), in the sense

that the experimental structure was assigned the lowest energy

and is comparable to the corresponding value for P1. The

distribution of the ranks is shown in Fig. 3. The calculation

times are longer (9 min per molecule) and the success rate is

lower for the space group P�1 because for P�1 12 free variables

have to be determined, three more than for the space group

P1. For P1, the choice of the origin is unrestricted; in P�1, the

origin has to coincide with an inversion center.

The newly derived potentials contain all interactions found

in the database. This includes even such rare atoms as Np or

Dy (of course, these potentials are poor due to the scarcity of

the data) and allows for the handling of compounds containing

these rare elements. Assuming the validity of pairwise additive

interactions, the inclusion of compounds with these rare

elements does not affect or improve the potentials for the

other atoms.

Other methods of parametrization, e.g. exact ab initio

calculations, may be impractical for time reasons. Moreover,

conventional methods of parametrization ®t only a few par-

ameters at a time and are very dif®cult to automate. Statisti-

cally derived potentials (Sippl, 1993) suffer from a mixture of

intermolecular and intramolecular correlations (Mitchell et al.,

1999). To separate these two in¯uences, the bridge function

must be known, which connects the atom-pair distribution

function with the potential (Henderson & Sokolowski, 1996).

In general, this function is not available and the separation of

these two in¯uences has to be made based on approximations

(Bahar & Jernigan, 1997).

6. Comparison with a force field

We compared the new potentials and the Dreiding force ®eld

(Mayo et al., 1990) with respect to their performance in

identifying experimental structures or structures resembling

these. For comparison, we retained only structures where

SYBYL was able to assign charges (169 structures in P1 and 26

in P�1). For each of these structures, we generated crystal

structures with FlexCryst and selected the best 20 according to

the score. To this set we added the experimental structure and

assigned charges with SYBYL according the Gasteiger±

HuÈ ckel method. For comparison we checked if the energy

function scores a structure out of the 21 candidates ®rst, which

is similar to the experimental structure. The new score

performs somewhat worse than the Dreiding force ®eld in

identifying reasonable structures. The trained scoring function

ranked a structure best that is similar to the experimental one

in 148 out of 169 cases (88%) in P1 and 18 out of 26 for P�1
(69%). The force ®eld succeeded 159 (94%) and 25 (96%)

times, respectively, in the same task (Table 2). This test

somewhat favors the force ®eld, because the generated

candidates are selected according to their score from the

trained scoring function. These structures are the likeliest

candidates lower in the score than the experiment. The force

®eld, instead, may correctly assign the order of these struc-

tures, but it cannot be excluded that other structures will be

lower in energy than the selected structures and/or the

experiment.

An analysis reveals that structures scored correctly by the

force ®eld, though incorrectly by the trained scoring function,

often show ions, highly charged atoms or hydrogen bonds. This

suggests that the present scoring function resembles mainly

the dispersion and exchange repulsion energy, in common

force ®elds often summed to the Lennard±Jones or Buck-

ingham potential. This suggests that the present score can be

improved by further differentiation of atom types to include

information about the partial charges of the atoms and their

local environment.
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Figure 3
Histogram of the rank of structures similar to the experimental structure
in space group P�1.

Table 2
Correct ranking by different methods.

Potential
P�1 P1

26 structures 169 structures

Trained 18 69% 148 88%
Dreiding 25 96% 159 94%
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The new score correlates with the dispersion and exchange

repulsion energy

EvdW�kJ� ' 210Etrained: �8�

The correlation coef®cient between the derived score and the

dispersion±repulsion energy is 0.83 (Fig. 4). Structures with

positive energy or positive score were not used for the

regression. For some structures, the exchange repulsion

energy surmounts the dispersion energy and the sum of both

becomes positive if a contact in the experimental structure is

very short. The reason can be an unusual contact or a

misplaced atom. The same can be observed with the new

score. It becomes in®nite (a high positive number, in practice)

if the structure contains a contact which is not observed in the

training set. The correlation with the sum of the total energy is

poor. A few ionic crystals perturb the correlation and the new

scoring function obviously does not describe ionic structures

correctly.

The dependence of the score on distance can be understood

as an empirical potential and as such can be compared after

calibration with the above factor to the force-®eld pair

potentials. In the following, we discuss the interactions of

hydrogen with the ®rst elements in detail. These potentials

re¯ect the features of the trained potentials in dependence of

the quality and quantity of data.

The curve for H� � �B shows the approximate form of a

Lennard±Jones potential (Fig. 5b). The energy is large for

small distances, reaches a minimum and then approaches zero

for larger distances, however, the curve is noisy. This behavior
Figure 4
Comparison of score versus crystal energy.

Figure 5
Interaction potential for hydrogen with the common elements of the ®rst row.



is observed for interactions, which occur rarely in the data-

base. The ®tted Lennard±Jones potential (dotted line)

resembles the force ®eld (dashed line), but the trained

potential curve indicates a deeper well depth and a slightly

shorter van der Waals radius.

The potentials of H with H (Fig. 5a), C (Fig. 5c), and F

(Fig. 5f) qualitatively resemble van der Waals potentials,

except for short distances; e.g. the H� � �C potential shows a

local minimum at 1.7 AÊ , i.e. at a distance smaller than the van

der Waals minimum at 3.4 AÊ . Such local minima are caused by

inaccurate structures with contacts at the corresponding

distances. Some examples are the structures FEBGUO,

PUDGOK and KUHKIH. The structure FEBGUO is not

excluded in the screening, but a detailed analysis indicates one

intermolecular C� � �H distance of 1.47 AÊ . The structure is

wrongly assigned to P121=a1 rather than P121=c1. Similar

errors occur for KUHKIH and PUDGOK (P121=c1 rather

than P121=n1). Such artefacts in the potentials can be avoided

by further screening methods.

The interactions of H with N (Fig. 5d) and O (Fig. 5e) are

particularly interesting. Besides the van der Waals minimum

there is a second minimum at a shorter distance. This

minimum corresponds to the hydrogen bond and is deeper

than the van der Waals minimum, in agreement with the well

known strength of hydrogen bonds. H atoms capable of

forming hydrogen bonds have additional terms in the force

®eld and our trained potentials strongly support this. The

average potential, which mixes interactions such as CÐH� � �O
and OÐH� � �O, can be separated by de®ning additional atom

types, which take into account the chemical environment of

the atom. As long as the number of de®ned atom types

remains low, it can improve the scoring function. As the

number of atom types becomes too large, the quality of the

scoring function will deteriorate due to over®tting. At present,

the atom types correspond to the elements. The different

interactions in the above example are not contained in the

O� � �H potential, they are treated implicitly through the

O� � �O and C� � �O potentials. The hydrogen bond is thus

described by the sum of the O� � �H and O� � �O potentials.

The results demonstrate that in a real structure prediction

problem one can perform a fast screening of the possible

structures with Flexcryst and the new score, and postprocess

the best structures with a force-®eld energy for even higher

accuracy.

7. Conclusions

In this work, we determined a scoring function for use in

structure prediction by using the structural information in the

CSD database and information on incorrect structures

obtained with the program Flexcryst. For this purpose, we

cleaned up the database, applied a learning machine to a

training set and validated the derived potentials on a test set of

molecules not included in the training set.

We have used a simple method from machine learning to

obtain an empirical scoring function for small-molecule crystal

structure prediction. Unlike previous work (Maiorov &

Crippen, 1992; Thomas & Dill, 1999), the assumptions made

about the functional form of the scoring function and its

relation to the data were minimal. The scoring function

corresponds to a discrete pair potential with a cut-off at 5.4 AÊ .

When the statistics are suf®cient, the obtained potentials are

smooth and show signi®cant similarity to Lennard±Jones

potentials. This is of particular interest because this informa-

tion is not included in the learning process.

In contrast to other parametrizations, all parameters are

optimized simultaneously. This avoids the problem of inter-

fering parameters of step-by-step procedures, which require

several iterations to become consistent (Foloppe & Mackerell,

2000). The scores obtained in this work can be simply

improved by further screening and the use of new experi-

mentally resolved structures. Given enough memory to store

all the structures, the parameterization itself is very fast (a few

hours on a single processor of a Sun Enterprise 4000,

250 MHz) and automatic.

Tests of the new scoring function on an independent set of

structures showed improved predictive power over statistical

potentials derived with the inverse Boltzmann method

(success rate of 72% for the new method over 53% for inverse

Boltzmann methods for structures from P1; Sippl, 1993;

Hofmann & Lengauer, 1997). A simple comparison with a

commercially available force ®eld has indicated that our

approach for obtaining a de novo energy function in an

automated way is very promising.
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